Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics I

نویسنده

  • Viorica Sofronie-Stokkermans
چکیده

The main goal of this paper is to explain the link between the algebraic and the Kripke-style models for certain classes of propositional logics. We start by presenting a Priestley-type duality for distributive lattices endowed with a general class of well-behaved operators. We then show that nitely-generated varieties of distributive lattices with operators are closed under canonical embedding algebras. The results are used in the second part of the paper to construct topological and non-topological Kripke-style models for logics that are sound and complete with respect to varieties of distributive lattices with operators in the above-mentioned classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics II

The main goal of this paper is to explain the link between the algebraic models and the Kripke-style models for certain classes of propositional non-classical logics. We consider logics that are sound and complete with respect to varieties of distributive lattices with certain classes of well-behaved operators for which a Priestley-style duality holds, and present a way of constructing topologi...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

Priestley duality for (modal) N4-lattices

N4-lattices are the algebraic semantics of paraconsistent Nelson logic, which was introduced in [1] as an inconsistency-tolerant counterpart of the better-known logic of Nelson [7, 13]. Paraconsistent Nelson logic combines interesting features of intuitionistic, classical and many-valued logics (e.g., Belnap-Dunn four-valued logic); recent work has shown that it can also be seen as one member o...

متن کامل

Canonical extensions of Stone algebras: the natural way

Canonical extensions were first studied, in the context of Boolean algebras with operators (BAOs), in the classic work of B. Jónsson and A. Tarski [12]. The development of a corresponding theory in a less restricted setting than that of BAOs lagged far behind. However major advances have been made in the past ten years by M. Gehrke in collaboration with B. Jónsson, J. Harding, Y. Venema and oth...

متن کامل

Canonicity and bi-approximation in non-classical logics

Non-classical logics, or variants of non-classical logics, have rapidly been developed together with the progress of computer science since the 20th century. Typically, we have found that many variants of non-classical logics are represented as ordered algebraic structures, more precisely as lattice expansions. From this point of view, we can think about the study of ordered algebraic structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Studia Logica

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2000